Search results for "Phase Noise"

showing 10 items of 28 documents

A fully-digital realtime SoC FPGA based phase noise analyzer with cross-correlation

2017

We report on a fully-digital and realtime operation of a phase noise analyzer using modern digital techniques with cross-correlation. With the advent of system on chip field-programmable gate arrays (SoC FPGAs) embedding hard core central processing unit, coprocessor and FPGA onto a single integrated circuit, the building of sensitive analysis devices for Time & Frequency research is made accessible at virtually no cost and benefits from reconfigurability. Used with high-speed digitizers we have successfully implemented a four-channel system whose preliminary results at 10 MHz shows a residual white noise floor < −185 dBrad2/Hz up to 5 MHz off the carrier, and flicker < −127 dBrad2/Hz using…

010302 applied physicsEngineeringSpectrum analyzerNoise measurementbusiness.industryReconfigurabilityIntegrated circuitWhite noise01 natural scienceslaw.inventionlaw0103 physical sciencesPhase noiseElectronic engineeringSystem on a chipField-programmable gate arraybusiness010301 acoustics2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFC)
researchProduct

Fundamental Noise Limits and Sensitivity of Piezoelectrically Driven Magnetoelastic Cantilevers

2020

International audience; Magnetoelastic sensors for the detection of low-frequency and low-amplitude magnetic fields are in the focus of research for more than 30 years. In order to minimize the limit of detection (LOD) of such sensor systems, it is of high importance to understand and to be able to quantify the relevant noise sources. In this contribution, cantilever-type electromechanical and magnetoelastic resonators, respectively, are comprehensively investigated and mathematically described not only with regard to their phase sensitivity but especially to the extent of the sensor-intrinsic phase noise. Both measurements and calculations reveal that the fundamental LOD is limited by addi…

010302 applied physicsPhysics[SPI.OTHER]Engineering Sciences [physics]/OtherCantileverMagnetic domainMechanical EngineeringAcousticsMagnetostriction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldVibrationResonatorMagnet0103 physical sciencesPhase noiseElectrical and Electronic Engineering0210 nano-technology
researchProduct

Phase-noise Impact on the Performance of mmWave-radars

2019

The impact of phase noise in Frequency Modulated Continuous Wave (FMCW) millimeter-wave (mmWave) radars is investigated in this paper. A FMCW signal is transmitted from the radar, reflected off a moving object and processed at a receiver in the radar. The impact of random phase noise/jitter on the performance parameters of estimated distance, speed and angle of arrival of an object is studied. Our studies show that there exists a threshold at about fifteen percent of the period of the carrier frequency, over which errors substantially manifest in the estimations. Distance estimation is less affected than speed and angle, which rely directly on the phase information for the estimations. Angl…

020301 aerospace & aeronauticsComputer scienceAcousticsPhase (waves)020206 networking & telecommunications02 engineering and technologySignallaw.inventionNoise0203 mechanical engineeringlawAngle of arrivalPhase noise0202 electrical engineering electronic engineering information engineeringContinuous waveRadarJitter2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)
researchProduct

Artifacts and Errors in Cross-Spectrum Phase Noise Measurements : Invited lecture

2021

Inserting an attenuator between the oscillator under test and the phase noise analyzer, one expects that the white phase noise increases monotonically with the attenuation. By contrast, we observe that with some oscillators the white noise has sharp minimum for a given value of the attenuation, which clearly indicates problem. With other oscillators, it increases monotonically with the attenuation, but the values are not consistent with the thermal energy introduced by the attenuator. In both cases artifacts are present, which takes the form of a sharp notch in the spectrum, occurring where the white FM noise crosses the white PM noise. Such anomalous behavior is the tip of the iceberg, and…

Attenuator (electronics)PhysicsSpectrum analyzerOpticsbusiness.industryAttenuationPhase noiseWhite noisebusinessCross-spectrumNoise (radio)Time–frequency analysis2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS)
researchProduct

Influence Of The Model Parameters On The Noise Performance Of Double-polysilicon BJTs For Microwave LNA's

1997

In the recent post we have measured the noise and the scattering parameters of several series of double polysilicon BJT's over the 2-6 GHz frequency range at different collector current values, according to their emitter finger number. From the experimental data, a noisy circuit model has been extracted based on a T-equivalent network. By means of the correlation matrix techniques, novel analytical expressions of the noise parameters have been derived. As a second step, a sensitivity analysis has been performed for evaluating the influence of each model element on the noise performance. The results show how to improve the characteristics of such devices for a better performance when employe…

Noise temperatureEngineeringNoise measurementbusiness.industryDouble polysilicon bipolar junction transistors Low noise amplifiers (LNA) noise modelsY-factorLow noise amplifiers (LNA)Noise figureNoise (electronics)noise modelsDouble polysilicon bipolar junction transistorsNoise generatorPhase noiseElectronic engineeringFlicker noisebusiness27th European Microwave Conference and Exhibition
researchProduct

Stable Optically Generated RF Signals from a Fibre Mode-Locked Laser

2010

Phase stability of RF signals obtained by two-mode filtering of a fibre mode-locked laser is analyzed. Time jitter is shown to be constant with selected mode spacing, confirming the scheme capability for generating stable RF signals up to extremely-high frequency.

Optical fiberMaterials sciencebusiness.industryMode (statistics)02 engineering and technologyLaser01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsOpticslawFiber laser0103 physical sciencesPhase noise0202 electrical engineering electronic engineering information engineeringRadio frequencybusinessOptical filterJitter
researchProduct

Multiple four-wave mixing in optical fibers: 1.5–3.4-THz femtosecond pulse sources and real-time monitoring of a 20-GHz picosecond source

2010

International audience; In this work, we report recent progress on the design of all-fibered ultra-high repetition-rate pulse sources for telecommunication applications around 1550 nm. The sources are based on the non-linear compression of an initial beat-signal through a multiple four-wave mixing process taking place into an optical fiber. We experimentally demonstrate real-time monitoring of a 20 GHz pulse source having an integrated phase noise 0.01 radian by phase locking the initial beat note against a reference RF oscillator. Based on this technique, we also experimentally demonstrate a well-separated high-quality 110 fs pulse source having a repetition rate of 2 THz. Finally, we show…

Optical fiberOptical fiberMaterials scienceNon-linear opticsOptical communication02 engineering and technology01 natural scienceslaw.invention010309 opticsFour-wave mixing020210 optoelectronics & photonicsOpticsPulse sourceslaw0103 physical sciencesPhase noiseFour-wave mixing0202 electrical engineering electronic engineering information engineeringTalbot effectOptical telecommunicationElectrical and Electronic EngineeringPhysical and Theoretical Chemistry[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryTalbot effectSingle-mode optical fiberAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPulse compressionPulse compressionPicosecondbusinessOptics Communications
researchProduct

Duty-ratio control of Nonlinear phase noise in dispersion-managed WDM transmissions using RZ-DPSK modulation at 10 Gb/s

2006

International audience; The authors compare analytical and numerical estimates, showing that the nonlinear phase noise of short optical pulses associated with the coupling between amplified spontaneous emission noise and fiber nonlinearity may be controlled by adjusting the duty cycle of the return-to-zero (RZ) signal modulation format. The impact of this effect in the optimization of the performance of 10-Gb/s dispersion-managed wavelength division multiplexed (WDM) systems using RZ-differential phase-shift keying (DPSK) modulation is discussed. By extensive numerical simulations, it is shown that the transmission quality of ultradense WDM systems using the RZ-DPSK modulation format may be…

PhysicsAmplified spontaneous emissionbusiness.industrynonlinear opticsPhysics::OpticsKeying02 engineering and technology01 natural sciencesAtomic and Molecular Physics and Optics010309 optics020210 optoelectronics & photonicsOpticsoptical fiber communication[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Duty cycleModulationWavelength-division multiplexing0103 physical sciencesPhase noise0202 electrical engineering electronic engineering information engineeringBit error rateElectronic engineeringbusinessPhase modulationphase modulation
researchProduct

A low phase noise microwave source for high‐performance CPT Rb atomic clock

2021

Abstract Phase noise of the frequency synthesizer is one of the main limitations to the short‐term stability of microwave atomic clocks. Here, a low‐noise, simple‐architecture microwave frequency synthesizer for a coherent population trapping (CPT) clock is demonstrated. The synthesizer is mainly composed of a 100 MHz oven‐controlled crystal oscillator (OCXO), a microwave comb generator, and a direct digital synthesizer (DDS). The absolute phase noises of 3.417 GHz signal are measured to be −55 dBc/Hz, −81 dBc/Hz, −111 dBc/Hz and −134 dBc/Hz, respectively, for 1 Hz, 10 Hz, 100 Hz and 1 kHz offset frequencies, which shows only 1 dB deterioration at the second harmonic of the modulation frequ…

PhysicsFrequency synthesizereducation.field_of_studybusiness.industry020208 electrical & electronic engineeringPopulationComb generatordBc02 engineering and technologyAtomic clockTK1-9971Direct digital synthesizerPhase noise0202 electrical engineering electronic engineering information engineeringOptoelectronicsElectrical engineering. Electronics. Nuclear engineeringElectrical and Electronic EngineeringbusinesseducationCrystal oscillatorElectronics Letters
researchProduct

Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer

2008

We present here an analysis of the sensitivity of a time-domain atomic interferometer to the phase noise of the lasers used to manipulate the atomic wave packets. The sensitivity function is calculated in the case of a three-pulse Mach-Zehnder interferometer, which is the configuration of the two inertial sensors we are building at the Laboratoire National de Metrologie et d'Essais-Systeme de References Temps-Espace. We successfully compare this calculation to experimental measurements. The sensitivity of the interferometer is limited by the phase noise of the lasers as well as by residual vibrations. We evaluate the performance that could be obtained with state-of-the-art quartz oscillator…

PhysicsInterferometric visibilitybusiness.industryWave packetPhase-locked loopInterferometryOpticsPhase noiseSensitivity (control systems)Time domainElectrical and Electronic EngineeringbusinessInstrumentationCrystal oscillatorIEEE Transactions on Instrumentation and Measurement
researchProduct